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Eigenvalues for a Centrally Loaded Circular

Cylindrical Cavity*

D. M. BOLLE~, MEMBER, IRE

Summary—The general availability of large high-speed com-
puters has made the use of series expansions in complicated field

theory problems feasible even when these series do not converge
rapidly. This paper outlines the method and illustrates its application

to the solution of a problem in cylindrical coordinates. At the same
time, the errors inherent in thk method of solution are indicated and

estimates are made of their magnitudes. A comparison of the method
with Slater% perturbation theory is made.

INTRODUCTION

c

ONSIDERABLE WORK has already been per-

formed [1 ]– [3] on cylindrical waveguides using

the method first proposed by Hahn [4]. This

method consisted of splitting a bounded region into a

number of subspaces, solving the wave equation within

each subspace, and matching the resulting solutions

across the interfaces of the subregions. In prior work,

the parameters of prime interest were the shunt im-

pedances introduced at the discontinuities in wave-

guides. This paper will discuss a method for determin-

ing the eigenvalues for a centrally loaded circular

cylindrical cavity. The eigenvalues, being character-

istics of the cavity system and fully describing it, are

the parameters [7] most sensitive to dimensional varia-

tion. At the same time, the accuracy of any proposed

method for obtaining them may be readily and ac-

curately evaluated through comparison with experi-

mental results.

This method of calculation also allows the rapid eval-

uation of a proportionality constant k, which may be

introduced into Slater’s perturbation theory as a first

order correction. If Slater’s perturbation theory is writ-

ten in the form [7]

Jv
$

where

k,= a constant depending on the geometry of the per-

turbing object and the mode under considera-

tion,l

At= volume of the perturbing object,

V~ = total cavity volume,

co. = resonant frequency of the unperturbed cavity,

then

provided At is sufficiently small. Therefore, the evalua-

tion of the slope of a plot of the variation of resonant

frequencies with changes in the volume of the disturb-

ing object from the method to be discussed in this paper

will yield the constant k,.

THEORY

Fig. 1 shows the cross section of the cavity to be con-

sidered. The cavity is presumed constructed from a per-

fect conductor and filled with an ideal dielectric. The

eigenvalues to be determined will be those of the TJ1oij
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modes (j even). The region within the cavity is divided

into subregions 1, I I and III. Through symmetry, we

may restrict ourselves to the region O ~ z ~ H and, con-

sequently, only the subregions I and II are of interest.

The solutions of the wave equation

(v’ + ko’)E8 = o (1)

in the subregions I and II, when E. is assumed sym-

metric in region II about the plane z = O and with respect

to the C#coordinate, are

.

E,l = ~ aJo(k~p) [COSB~z + C,. sin p~z] (2)
?n=l

and

.

EZ1l = ~ bnZO(kM) cos I’nz, (3)
n= 1

where

Zo(k’,,p) = Jo(k?LP) + RnNo(~W) (4)

and km, /3~, k%, and 17n are constants of separation such

that

koz = kmz + pm’ = k.z + I’.z. (5)

These field modes are the ones of interest in linear par-

ticle accelerators. Since EOII = O, for z = O, the central

structure may be supported by slender columns in the

plane z = O without disrupting the field significantly.

The procedure used in the analysis is as follows. The

general solutions to the wave equation for the sub-

spaces are written in the coordinate system applicable

to the particular geometry under consideration. The

number of subspaces then determines the number of

infinite sets of constants in the series expansions for the

field components as well as the number of unknown

constants of separation that must be evaluated through

an application of the boundary conditions. After apply-

ing the boundary conditions and matching the field

components across the interfaces between the subspaces,

there will remain a number of infinite sets of linear si-

multaneous equations. After eliminating the unknown

constants, these yield a single equation that may then

be solved for the remaining unknown constant of sepa-

ration and give the eigenvalues of the system.

Applying the boundary conditions

EP1 = O, Z=H, 05p <a; (6)

Ezx = O, p=b, L~z~H; (7)

E,II = O, p=a, O~z~L; (8)

E,Ir = O, p=b, O~z~L; (9)

to (2) and (3) gives

E,, = ~ aJ,(fl,~p/b) cos &(H – z)/cos &J7, (10)
m=1

EZII = ~ b. Zo(zl,),p/b) cos I’,,z, (11)
‘n=1

where the flo~ are the zeros of

Jo(P) = O

and the Vo. are the zeros of

where

Y = b/a, ?’>1. (12)

The last step is to apply the boundary conditions across

the interface z =L, a <p ~ b, i.e., to match the field com-

ponents across the interface between regions I and II.

At the interface we equate the radial and longitudinal

components of the field and use the fact that, over the

intervals considered, the Bessel functions and linear

combination of Bessel functions are orthogonal. This

allows the relationships between the expansions coef-

ficients to be obtained. For the continuity of the longi-

tudinal component at z = L and asps b we may write

sb sb

EzIpZ,(v,pp/b)dp = Ez,,pZo(v,Pp/b)dp. (13)
a a

For the radial electric field component we may write

sb

s

a

-@pJo(po,p/b)dp = E,lpJo(Po,p/b) dp
o 0

but

EP1 = O at z=L, Ospsa,

and

E, = EPII at z = L, a~p~b.

Therefore

sb

s

b

EpIpJo($ogp/’b)dp = &mJo(~o@/b)@ (14)
o .

From (13) and (14) we obtain the following results:

.&lm JO(PO~/r)

(po,n’ – 109’)
(15)

m,=1

2Po,Jo(Po,/7)
RAqAq =

7J12(pog)

. .g BnRBn zl(von/f’) ,

(40,2 – Z’on’)

(16)
n=l

where

A. = am
Cos Dn(H – L)

, R.!. = ~tan/3. (H– L) (17)
cos &H
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But the B. =Bn, thus eliminating the B. from (16)

using (15), gives

HL4*.4QJl’(po,)

= 5 R..
vo,Lz12(Ton/7’)

~=, [7’21’(,0,,) - Z,’(vOn/r)] “

The eigenvalues, ken, of the cavity will therefore be

given by the roots of the secular determinant of (19);

(k,, – 21) lm j& . . .

/221 (h, – 32?) h23 ““”

)2,1 11$2 (h,, – %,) . . .

12’!1 . . . . . . . . .

. . . . . . . . .

where

kn,g = ~ I’. tan (T’.L) ~z,, k,t~, = kq~,
,2=1

~a = @g tan ,f3Q(H – L) “J12(flJ/JflOQ,

and

Jo(Pom/Y)Jo(Po,/~)
k =

‘m’ (1,0n2– 4.,,,’) (,..’ – po,j ‘

z,~(von/?’)
2. =

[?’’zl’(von) – Z,’(ZJOJ?’)] “

1 (20)

(21)

(22)

(23)

(24)

The unknown ko occurs within the (3,. and r. in the form

given by (5). Let A(kO) represent the value of the above

determinant (20) for any particular value of the un-

known ko. Then

A(ko) = O (25)

will give the eigenvalues, ken, of the cavity. In any nu-

merical work the order of the determinant that will give

a desired accuracy must be determined.

ERROR ANALYSIS

There are two major sources of error in the infinite

series expansion approach. The first is incurred in ter-

minating the infinite series, ]Zgm, that lead to the evacua-

tion of the expansion coefficients. The second source of

error results from limiting the order of the secular de-

terminant (20). .4 further consideration is the number

of significant figures that must be carried in the calcu-

lations for the eigenvalues to have a desired accuracy.

We will first consider the infinite series hq.i. TO investi-

gate the error introduced through terminating these

infinite series, the functions (21)–(24) (particularly

their asymptotic behavior for large n) must be con-

sidered in some detail. Next we will col~sider the effect

on the eigenvalues that results from considering a finite

determinant in (25). Finally it will be shown how the

desired accuracy of the eigenvalues determines the
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number of significant figures that must be carried in the

calculations.

To observe the convergence of the k,~ we need the

asymptotic values of the z,,. To obtain the asymptotic

form requires the following information.

The zeros of JO(P), as P becomes sufficiently large,

approach the zeros of

Cos (p – 7r/’4),

and the zeros of

Jo(z)) ,~JO(V/7’) – ~o(V/’7) l~rl)(~)

approach the zeros of

tan (zJ/7) – tan (v)

for v sufficiently large.

This gives

pom=(2m+ l);+:

and

Zon = mr/(?’ — 1),

respectively, for sufficiently large m and n.

The function z., given in (24), then becomes

‘= {[25:)12 - ‘}-’-”’

(26)

(27)

(28)

(29)

(30)

(31)

for n sufficiently large. Table I compares the exact

values and the limiting value of Z. as n increases for the

particular case r =4.

The behavior of the functions h~g will now be con-

sidered. Let a value of n = no be selected sufficiently

large so that the large argument approximation for the

Bessel functions may be used. The following result is

then obtained

m-l

km, = ~ r,, tan (rnL) .Znknm,
,,= 1

m r,, tan (1’,,1.). Jo(Po~/r)Jo(Po,/v)
+x . (32)

.=no (?’ - l)(m,” – pom’)(z’o,,z - f“.’)

Next a value of n = IZl may be chosen such that nl > tio

and sufficiently large to ensure

z!on2>> pomz, poq2 (33)

and

(ZJOJl))2 >> ko’. (34)

Then,

r,, tan (r,LL) ~ Ymr/(v – I)b. (35)

Therefore, the final term in (32), defined as the error

term E,.g, is

I’. tan (1’.L) ~Jo(po~/r)Jo(pog/~)
E w =*:0 (Y_ ~)(oon’ _ ~om2)(,,on2 _ flog,) ‘ (36)
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TABLE I

‘r’ z. (r = 4)

;

:
5
6
7 I 0.33349480
8 0.33404574

0.33388359
1; 0.33683268
11 0.33433147
12 0.33574898
13 0.33383231
14 0.33031662
15 0,33262065
16 0.33315857
17 0.33339393
18 0.33366988
19 0.33336504
20 0.3.3334554

lim &=o.33333333
xl+m

TABLE II

?72, q
I lzm.(t= 20) I E.r(:=20) I A +B

1 L,(WC=40) I Em,(nD=40) I C+D

1, 10 0.001069 –0.00004853 0.001021 0.001033
8,5

–0.00001245 0.001021
0.000710 0.00001531 0.000725

6,5
0.000721

0.002994 –0.00002771
0.00000394

0.0029663
0.000725

0,002974 –O .00000776 0.0029662

and leads to the result six decimal places could be achieved by summing the

.“
exact series to twenty terms and correcting this through

hence,

km. =

72—1

x z.hr,~QI’n tan (rnL)
?l=l

+(K–l)’ ()— Jo(pom/7’)Jo(po*/r) 5 —
6(mr)3

1 3. (38)
n=%l n

An estimate can now be made of the error incurred in

terminating the series h~Q after a finite number of terms.

This error may then be reduced through the use of the

error term Emg.

Table II shows some of the results that were ob-

tained in the course of the calculations. Eq. (21) was

used to compute the sum of the first twenty and forty

terms in the series h~~. The error in the value of the h.,,

that occurs when we terminate the series after twenty

and forty terms was then computed using (37).

If (37) gives a good prediction of the error made, then

the E~g added to the k~g should give identical results for

the two cases. Table II shows that when conditions

(33) and (34) are satisfied, excellent agreement is ob-

tained. In the particular case illustrated an accuracy of

the error term E~g given by (37).

The next source of error is introduced in the solution

of the secular determinant (20) for the eigenvalues kO..

The eigenvalues kOm that satisfy (25) are those values of

k. that give the zero crossings of the secular determi-

nant. To determine the kon we are not interested in the

absolute value of the determinant A(ko) but only in the

behavior of A(ko) in the neighborhood of the ken. We

notice that as L+O, the hmQ+O, and in the limit L = O

we retain only the diagonal terms in the determinant,

where the successive eigenvalues are obtained from the

successive terms in the diagonal. The eigenvalues of the

perturbed cavity are thus associated with the corre-

sponding diagonal terms and are perturbed from their

value for L = O by the nonzero off-diagonal terms. It

may be noted here that only the ~~ and I’. in the deter-

minant are functions of ko; i.e.,

% = [ko’ – (po,Jb)’] ‘/’

and

r. = [koz – (zIo./b)’] 112.

When the lowest values of kon are of interest, the P, and

17n, for sufficiently large q and n, become essentially in-

dependent of ko since than ko<<pog/b and ko<<von/b.
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Also for g and m large, i.e., POQand po~ large, h~g becomes

k .(* = 2’ c“s(%)cos(++700??401) 1’2

“5
r. tan (rnL). Z12(ZJ0,Jr)

n=, [r’z,’(zJo,,) – z,’(2’,n/7)] (ton’ – porn’) (%,’ – poq’) ‘

——

where we have shown that the summation converges,

and therefore as q and w- co so hg~-+O. Furthermore,

under these same conditions

( r T

XQ~ fIQ tan DU(H — L) COS2 Poq — — — ~
)/

2p”*hr
4

[
= p, tan B,(H – L) COS’ (2q + 1)~ – T

v
2zrpoq2

Therefore x,--+O for sufficiently large q.

Thus, not only are the coefficients hg~ and XQ insensi-

tive to changes in ko for q and m sufficiently large in the

range where the lowest eigenvalues lie but, also, these

coefficients tend to zero as their order increases.

Since we are interested only in the behavior of A(kJ

as a function of ko, we need to examine only that part

of the determinant that is sensitive to changes in the

value of k. being considered. For the lowest eigenvalues

of k. we will therefore approximate the infinite cfeter-

minant by a finite one since the further terms in the

determinant can only serve to change the scale of the

results and not their functional form. The size of the

determinant is determined by inspecting the sensitivity

of the coefficients to changes in k. as they are being cal-

culated. The column of coefficients, where the change is

less than one unit in the last significant figure, forms the

final column and row of the determinant that need be

considered; i.e., if ~ko is the accuracy desired in ko then

the largest m and q are chosen such that

and

\vhere c denotes a change of less than one in the last

significant figure carried in the calculations. Whichever,

m or q, is the larger in order that both conditions (39)

be satisfied, determines the final row and column of co-

efficients that will terminate the determinant to be used

in the calculations.

Let us next consider the effect of any residual error in

A(kO) on the values of ko~ so obtained. Assume errors al

and ~z in the values of A(kOflJ) and A(kOc2J) (where

A(kotl)) and A(ko@j) are the correct values of the deter-

minant for ko = ko(lJ and ko= ko(zj, ko(l)<ko and ko(2j >ko).
The ko(l) and ko(2) are selected such that the root k~~ of

the determinant A(kO) is straddled by the two values of

ko. If ~kom is the error in the value of ko~ due to the

presence of 61 and & and linear interpolation is pre-

sumed acceptable as far as indication of the error is con-

cerned, then for \ 8 I <<IA I we obtain

&A(ko(z)) – &A(ko(lJ)
d(ko,,) ~ ,A(ko,l) _ A(ko(2))12 “ (ko(2) – ‘o(’)). (@

Therefore, if the 8,, are at least one order of magnitude

smaller than A(ko(n)) and A(ko(n)) =A(ko(”+l)), the error

in kon is at least one order and generally two orders of

magnitude less than (ko12)—ko(l)).

Finally, the number of significant figures that must

be carried in the calculations is determined, of course,

by the accuracy desired in the results. Once we have

determined the number of significant figures required

in the ko~, we then inspect the terms containing ko and

assure that a sufficient number of significant figures are

carried in the calculations, so that the terms around the

diagonal term in the secular determinant that is asso-

ciated with the eigenvalue sought are sensitive to

changes in the last significant figure of ko. Directly from

this we can proceed with the tests (39) which tell us how

large a determinant will have to be considered in our

calculations.

RESULTS

Calculations were performed on a circular cylindrical

cavity. The cavity parameters assumed were: inside

length 2H= 0.146 m, inside diameter 2b = 0.0491 m,

and Y =4. The ratio L/H was varied over the range

o&w.2. Four-by-four and ten-by-ten determinant ap-

proximations were used to calculate the resonant fre-

quencies of the two lowest TNT (even) modes, i.e., the

TMOIO and TMOIZ modes, as the ratio L/H was varied

from O to 0.2. These results are shown in Figs. 2 and 3

together with the curves obtained from Slater’s pertur-

bation theory and the experimental data. The relatively

simple experimental equipment used to obtain the

points shown provided an accuracy no greater than

three significant figures. A Datatron -204 digital com-

puter was used throughout these calculations. The com-

puting time required for evaluating A(ko,,) for a particu-

lar value of L/H and ,40 was somewhat less than three

minutes for the ten-by-ten approximation.

From the results shown in Figs. 2 and 3, k. was found

to be 3.63 and 3.67 for the two lowest modes. Since k.

is only a function of the geometry of the perturbing ob-

ject and the mode type considered, it is to be expected

that the values of ks change little when the order of the

mode is changed, providing the field structure in the

neighborhood of the perturbing object does not change

radically. The calculation of k, is reasonably rapid

since, for small L/H ratios, a four-by-four determinant

approximation is usually found to suffice.

The poor agreement of the ten-by-ten approximation

in Fig. 3 is caused, to some extent, by the fact that only

five significant figures were used in calculating these

results. FIowever, the main conclusion is that a ten-by-

ten approximation is not sufficient to satisfy conditions

(39) for L/H greater than 0.1 for the second mode. Ex-

trapolating the curve from small values of L/H for the
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Fig. 2—Resonant frequency vs L/H, 1st mode TMOIO.

latter case gives reasonable agreement with the experi-

mental results up to the limit of the data obtained.

CONCLUSIONS

It may be concluded that this method, as used by

previous authors to determine discontinuity impedances

may be extended successfully to determine the eigen-

values of centrally loaded circular cylindrical cavities.

The necessary accuracy can be achieved rapidly on high-

speed digital computers without a need to generate

special functions to increase the rate of convergence.

Furthermore it has been shown that this method of cal-

culation allows a check of the number of terms to be

used in the series expansions, the order of the deter-

minant, as well as the number of significant figures that

must be carried in the calculations for a desired degree

of accuracy.

TABLE OF SYMBOLS

constants

constants

error term in J2~Q

dimension of the cavity

Y = b/a

K, a constant defined by a ratio of inte-

grals

k., km, @m, rn constants of separation

ko = W~~oCo

kotlj, kotzj particular values of k.

kofi the set of eigenvalues of the system
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Vl)n

v,
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z.(x)

A(ko)

At

u

Wo

81, 82
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particular values of n

zeros of Jo(p)

sets of constants

zeros of ZO(V) = Zo(v/k)

total cavity volume

functions

linear combination of Bessel function

of the first and second kind

indicial determinant

volume of perturbing body

radian frequency

resonant radian frequency of un-

disturbed system

error in A(ko)
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