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Eigenvalues for a Centrally Loaded Circular

Cylindrical Cavity*

D. M. BOLLET, MEMBER, IRE

Summary—The general availability of large high-speed com-
puters has made the use of series expansions in complicated field
theory problems feasible even when these series do not converge
rapidly. This paper outlines the method and illustrates its application
to the solution of a problem in cylindrical coordinates. At the same
time, the errors inherent in this method of solution are indicated and
estimates are made of their magnitudes. A comparison of the method
with Slater’s perturbation theory is made.

INTRODUCTION

ONSIDERABLE WORK has already been per-
(g formed [1]-[3] on cylindrical waveguides using

the method first proposed by Hahn [4]. This
method consisted of splitting a bounded region into a
number of subspaces, solving the wave equation within
each subspace, and matching the resulting solutions
across the interfaces of the subregions. In prior work,
the parameters of prime interest were the shunt im-
pedances introduced at the discontinuities in wave-
guides. This paper will discuss a method for determin-
ing the eigenvalues for a centrally loaded circular
cylindrical cavity. The eigenvalues, being character-
istics of the cavity system and fully describing it, are
the parameters [7] most sensitive to dimensional varia-
tion. At the same time, the accuracy of any proposed
method for obtaining them may be readily and ac-
curately evaluated through comparison with experi-
mental results.

This method of calculation also allows the rapid eval-
uation of a proportionality constant k, which may be
introduced into Slater’s perturbation theory as a first
order correction. If Slater’s perturbation theory is writ-

TP

ten in the form [7]

9
w2 — wo”

f (H T — E-T)de
Az

w2

(uH-H 4 ¢E-E)dv

Vs
where

ks=a constant depending on the geometry of the per-
turbing object and the mode under considera-
tion,!

At =volume of the perturbing object,

V,=total cavity volume,

wp=resonant frequency of the unperturbed cavity,

then

provided Af is sufficiently small. Therefore, the evalua-
tioh of the slope of a plot of the variation of resonant
frequencies with changes in the volume of the disturb-
ing object from the method to be discussed in this paper
will yield the constant k..

THEORY

Fig. 1 shows the cross section of the cavity to be con-
sidered. The cavity is presumed constructed from a per-
fect conductor and filled with an ideal dielectric. The
eigenvalues to be determined will be those of the T'My;;

Fig. 1.

* Received by the PGMTT, July 18, 1961: revised manuscript
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1 See for example, L. C. Maier and J. C. Slater, “Field measure-
ments in resonant cavities,” J. Appl. Phys., vol. 23, pp. 68 and 78;
January, 1952.
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modes (f even). The region within the cavity is divided
into subregions I, II and III. Through symmetry, we
may restrict ourselves to the region 0 <z<H and, con-
sequently, only the subregions I and II are of interest.
The solutions of the wave equation

(V2 + B E, = 0 (1)

in the subregions I and II, when £, is assumed sym-
metric in region II about the plane 2=0 and with respect
to the ¢ coordinate, are

Eg = 2 ano(kmp) [0S Buz + C sin pnz] (2)

m=1
and
B = Z b, Z o(fenp) cos I'n2, 3)
n=1
where
Zo(knp) = Jo(knp) + RniV()(knp) (4)

and k., Bn, B, and I', are constants of separation such
that

ke = km2 + ,Bm2 = kng + T2 (5)

These field modes are the ones of interest in linear par-
ticle accelerators. Since E1=0, for 2=0, the central
structure may be supported by slender columns in the
plane =0 without disrupting the field significantly.
The procedure used in the analysis is as follows. The
general solutions to the wave equation for the sub-
spaces are written in the coordinate system applicable
to the particular geometry under consideration. The
number of subspaces then determines the number of
infinite sets of constants in the series expansions for the
field components as well as the number of unknown
constants of separation that must be evaluated through
an application of the boundary conditions. After apply-
ing the boundary conditions and matching the field
components across the interfaces between the subspaces,
there will remain a number of infinite sets of linear si-
multaneous equations. After eliminating the unknown
constants, these yield a single equation that may then
be solved for the remaining unknown constant of sepa-
ration and give the eigenvalues of the system.
Applying the boundary conditions

Ex=0, z=H  0Zp<uaq (6)
Eqx=0, p=%  LZz<0H (7
Eqr =0, p = 4a, 0<z<L; 8
Ex=0, p=0, 0<z2< L (9)

to (2) and (3) gives

Eg = Z @ o(Pomp/b) cos Bn(H — 2)/cos B H, (10)
m==1

Ea1 = 2, b.Zo(veup/b) cos Tz, (11)

n=1
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where the P, are the zeros of
Jo(p) =0
and the v, are the zeros of
Jo(v) No(2/#) — Jo(v/r)No(v) = 0,
where

r = b/a, (12)

The last step is to apply the boundary conditions across
the interface =1, a <p <b, 1.e., to match the field com-
ponents across the interface between regions 1 and 1L
At the interface we equate the radial and longitudinal
components of the field and use the fact that, over the
intervals considered, the Bessel functions and linear
combination of Bessel {unctions are orthogonal. This
allows the relationships between the expansions coef-
ficients to be obtained. For the continuity of the longi-
tudinal component at 3=7L and ¢ <p<bh we may write

r > 1.

b b
szmZo(vopp/b)dp=f Eox1pZo(vopp/b)dp.  (13)

a a

For the radial electric field component we may write

b a
[ ot stounvrio = [ “Boropunrvrie
0

4

+ f bprpJ o(pogp/b)dp,
but

Ex1=0 at gz =L, 0<p<uq,
and

E, = Eun at z=1, a<p<b
Therefore

b b
f Eplpfo(jmqp/b)dp = f EpHP]u(POqP/b)dP- (14)
0 a

From (13) and (14) we obtain the following results:

B 21’7)01,21(‘00?/1’)
! [72Z12("'0p) - Zl?@'&l}/")]
i Jolpon/7)
> An T (15)
m=1 (pOm - ‘U[)pu)
Rad, = 2p00T o(po/7)
"]12(p0q)
[ Z s
N L (16)
n=1 (p0q2 - '1'0n~)
where
w(H — L b8,
Ay S L) g (1) (17)
cos BnH Pom
bFn
B, = b, cos T, L, Ry, = tanT',L. (18)
Von
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But the B,=B,, thus eliminating the B, from (16)
using (15), gives
%RAqujlﬁ(j’Oq)
© vouZ 12 (Ton/ 7
= ZRBn o - ’ - ( : /q) *
n=1 [7‘21“(1'01) - Zl“(voﬂ'/”)]
i y Poat o(pon/ 1) o(pog/7)

m
m=1 (7)0702 - POmZ)(v0n2 - Pﬂqg)

(19)

The eigenvalues, kg, of the cavity will therefore be
given by the roots of the secular determinant of (19);

(llu - x1) 20 By
1121 (hzz - xz) hos
]Z31 ]Zgg (h33 -_— xg) s (20)
m
where
g = 2 Totan (TWL) 20 Jumg = Ham (21)
n=1
%, = Bgtan B,(H — L) T2 (peg)/pog, (22)
and
L 7)]‘)({ W/ (23)
(‘Z'On2 - P()nz?) (TOnH - quQ)
Z1%(von
7, = 1(’10 /7') . (24)

[72Z12(’U0n) — Z* (7)0,;/7)]

The unknown kg occurs within the 8,, and I, in the form
given by (5). Let A(k,) represent the value of the above
determinant (20) for any particular value of the un-
known ko Then

Ako) = 0 (25)

will give the eigenvalues, kg, of the cavity. In any nu-
merical work the order of the determinant that will give
a desired accuracy must be determined.

ERROR ANALYSIS

There are two major sources of error in the infinite
series expansion approach. The first is incurred in ter-
minating the infinite series, #4m, that lead to the evalua-

tion of the expansion coefficients. The second source of

error results from limiting the order of the secular de-
terminant (20). A further consideration is the number
of significant figures that must be carried in the calcu-
lations for the eigenvalues to have a desired accuracy.

We will first consider the infinite series %,,. To investi-
gate the error introduced through terminating these
infinite series, the functions (21)-(24) (particularly
their asymptotic behavior for large »#) must be con-
sidered in some detail. Next we will consider the effect
on the eigenvalues that results from considering a finite
determinant in (25). Finally it will be shown how the
desired accuracy of the eigenvalues determines the
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number of significant figures that must be carried in the
calculations.

To observe the convergence of the %,.» we need the
asymptotic values of the z,. To obtain the asymptotic
form requires the following information.

The zeros of Jo(p), as p becomes sufficiently large,
approach the zeros of

cos (p — 7/4), (20)
and the zeros of
To(@)Nolv/r) — Jo(v/r) No(v) 27
approach the zeros of
tan (v/#) — tan (o) (28)
for v sufficiently large.
This gives
™ T
pom = Cm + 1) — + — (29)
2 4
and
v, = nrw/(r — 1), (30)

respectively, for sufficiently large m and =.
The function z,, given in (24), then becomes

for » sufficiently large. Table I compares the exact
values and the limiting value of z, as # increases for the
particular case r=4.

The behavior of the functions /g will now be con-
sidered. Let a value of n=mn, be selected sufficiently
large so that the large argument approximation for the
Bessel functions may be used. The following result is
then obtained

no—1

Img = 2, Tutan (Do) 20 Famg

n=1

© T, tan (TLL) - Jo(pom/7)Tolpoe/7)
+ > )
n=ng (7’ - 1)(1)071,2 - P0m2> (7)017'2 _ PUQZ)

(32)

Next a value of #=#%; may be chosen such that n;>#n,
and sufficiently large to ensure

2022 > pum?, Pog” (33)
and
(v0n/0)? 3> ko’ (34)
Then,
T, tan (I'L) = rux/{r — 1)b. (35)

Therefore, the final term in (32), defined as the error
term E,,, is

o i T, tan (T,L) - Jo(pom/7) T o(pog/7)
" n=ng (7’ - 1) ('U()n2 — pOmZ) (1’0n2 - Poqz) ’

(36)
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TABLE I
n sn(r=4)
1 0.36273077
2 0.34271069
3 0.33846524
4 0.33559658
5 0.33507737
6 0.33472793
7 0.33349480
8 0.33404574
9 0.33388359
10 0.33683268
11 0.33433147
12 0.33574898
13 0.33383231
14 0.33031662
15 0.33262065
16 0.33315857
17 0.33339393
18 0.33366988
19 0.33336504
20 0.33334554
lim 2,=0.33333333
TABLE II
A B C D
" g ’ Fng(n=20) ’ Ey(n=20) A+5 l hng(n=40) ‘ Epy(n'=40) C+D
1,10 0.001069 —0.00004853 0.001021 0.001033 —0.00001245 0.001021
8,5 0.000710 0.00001531 0.000725 0.000721 0.00000394 0.000725
6,5 0.002994 —0.00002771 0.0029663 0.002974 —0.00000776 0.0029662
and leads to the result six decimal places could be achieved by summing the
( s . exact series to twenty terms and correcting this through
r — d :
Fong = Jo(pon/ DT o(pog/7) ———— 33— (37) the error term E,, given by. (3.7). . .
b(mr)? oo, »® The next source of error is introduced in the solution
of the secular determinant (20) for the eigenvalues kgp.
hence, The eigenvalues kq, that satisfy (25) are those values of
o ko that give the zero crossings of the secular determi-
Fmg = 2, ZnltumgTs tan (T, L) nant. To determine the k,, we are not interested in the
n=1 absolute value of the determinant A(k,) but only in the
(r—1)? VLY behavior of A(kg) in the neighborhood of the kg,. We
+ = To(pom/7)To(pog/7) 2 <_> . (38) notice that as L—0, the %,,—0, and in the limit L=0
6(rm)? n=ny \ 1 we retain only the diagonal terms in the determinant,

An estimate can now be made of the error incurred in
terminating the series /., after a finite number of terms.
This error may then be reduced through the use of the
error term Fp,.

Table Il shows some of the results that were ob-
tained in the course of the calculations. Eq. (21) was
used to compute the sum of the first twenty and forty
terms in the series /i,y The error in the value of the 4,,
that occurs when we terminate the series after twenty
and forty terms was then computed using (37).

If (37) gives a good prediction of the error made, then
the £, added to the k., should give identical results for
the two cases. Table II shows that when conditions
(33) and (34) are satisfied, excellent agreement is ob-
tained. In the particular case illustrated an accuracy of

where the successive eigenvalues are obtained from the
successive terms in the diagonal. The eigenvalues of the
perturbed cavity are thus associated with the corre-
sponding diagonal terms and are perturbed from their
value for L=0 by the nonzero off-diagonal terms. It
may be noted here that only the 8, and T', in the deter-
minant are functions of &g; 7.e.,

It

Bq [k02 - (Pﬂq/b)2]1/2

and

T = [Ro> — (v0n/0)2] V2

Il

When the lowest values of ko, are of interest, the 8, and
Iy, for sufficiently large ¢ and %, become essentially in-
dependent of k¢ since than ky<&Kpo,/b and ke<Kvo./b.
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Also for g and m large, i.e., pog and pon large, by, becomes

27’ <P0m 7r> <P0q 7r>
fg = —"—"—c08 | —— —— ] cos { — — —
7(Pompog) M2 r 4 7 4

i T, tan (TﬂL> ‘Z12<7)0n/7)
o [7°Z32(ve) — Z1*(von/7) ] (v0a® — pom?) (0> — POqg)’
where we have shown that the summation converges,

and therefore as ¢ and m— % $0 hg—0. Furthermore,
under these same conditions

s ™
¥, = B, tan B,(H — L) cos? (poq — —;l— — 7) / 2pog*m

= 8, tan B, (H — L) cos? [(29 + 1) % — 71-} / 2w pog?

Therefore x,—0 for sufficiently large ¢.

Thus, not only are the coefficients %4 and x, insensi-
tive to changes in ko for ¢ and m sufficiently large in the
range where the lowest eigenvalues lie but, also, these
coefficients tend to zero as their order increases.

Since we are interested only in the behavior of A(ky)
as a function of ko, we need to examine only that part
of the determinant that is sensitive to changes in the
value of k¢ being considered. For the lowest eigenvalues
of ky we will therefore approximate the infinite deter-
minant by a finite one since the further terms in the
determinant can only serve to change the scale of the
results and not their functional form. The size of the
determinant is determined by inspecting the sensitivity
of the coefficients to changes in &, as they are being cal-
culated. The column of coefficients, where the change is
less than one unit in the last significant figure, forms the
final column and row of the determinant that need be
considered; 1.e., if 8k, is the accuracy desired in k¢ then
the largest m and g are chosen such that

hmq<k0 i 5k0) - hmq(ko) < €
and

xq(ko i 5kn) e xq(ko) < €,

(39)

where € denotes a change of less than one in the last
significant figure carried in the calculations. Whichever,
m or ¢, is the larger in order that both conditions (39)
be satisfied, determines the final row and column of co-
efficients that will terminate the determinant to be used
in the calculations.

Let us next consider the effect of any residual error in
A(Rg) on the values of kg, s0 obtained. Assume errors 8,
and 8, in the values of A(k,®) and A(ky?®) (where
A(ky™W) and A(k(®) are the correct values of the deter-
minant for By = kM and ko=Ek,®, B¢® <koand k¢ > k).
The k@ and £,® are selected such that the root kg, of
the determinant A(ky) is straddled by the two values of
k. If 8k, is the error in the value of kg, due to the
presence of 6; and & and linear interpolation is pre-
sumed acceptable as far as indication of the error is con-
cerned, then for ISl <<|A[ we obtain
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518k ®) — 3,A(RyV)

8(kon) = [A(Re® — A(R@)]2

(Be® — Be®).  (40)

Therefore, if the §, are at least one order of magnitude
smaller than A(k,™) and A(ky™) =A(k™D), the error
in kg, is at least one order and generally two orders of
magnitude less than (By® — kW),

Finally, the number of significant figures that must
be carried in the calculations is determined, of course,
by the accuracy desired in the results. Once we have
determined the number of significant figures required
in the k., we then inspect the terms containing &, and
assure that a sufficient number of significant figures are
carried in the calculations, so that the terms around the
diagonal term in the secular determinant that is asso-
ciated with the eigenvalue sought are sensitive to
changes in the last significant figure of k. Directly from
this we can proceed with the tests (39) which tell us how
large a determinant will have to be considered in our
calculations.

REsuLTs

Calculations were performed on a circular cylindrical
cavity. The cavity parameters assumed were: inside
length 2H=0.146 m, inside diameter 2b6=0.0491 m,
and r=4. The ratio L/H was varied over the range
0—0.2. Four-by-four and ten-by-ten determinant ap-
proximations were used to calculate the resonant fre-
quencies of the two lowest TM (even) modes, i.e., the
TMo10 and TMy;, modes, as the ratio L/ was varied
from 0 to 0.2. These results are shown in Figs. 2 and 3
together with the curves obtained from Slater’s pertur-
bation theory and the experimental data. The relatively
simple experimental equipment used to obtain the
points shown provided an accuracy no greater than
three significant figures. A Datatron-204 digital com-
puter was used throughout these calculations. The com-
puting time required for evaluating A(ks,) for a particu-
lar value of L/H and k, was somewhat less than three
minutes for the ten-by-ten approximation.

From the results shown in Figs. 2 and 3, &, was found
to be 3.63 and 3.67 for the two lowest modes. Since k,
is only a function of the geometry of the perturbing ob-
ject and the mode type considered, it is to be expected
that the values of %, change little when the order of the
mode is changed, providing the field structure in the
neighborhood of the perturbing object does not change
radically. The calculation of k, is reasonably rapid
since, for small L/H ratios, a four-by-four determinant
approximation is usually found to suffice.

The poor agreement of the ten-by-ten approximation
in Fig. 3 is caused, to some extent, by the fact that only
five significant figures were used in calculating these
results. However, the main conclusion is that a ten-by-
ten approximation is not sufficient to satisfy conditions
(39) for L/H greater than 0.1 for the second mode. Ex-
trapolating the curve from small values of L/H for the
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Fig. 2—Resonant frequency vs L/H, 1st mode TM go.

latter case gives reasonable agreement with the experi-
mental results up to the limit of the data obtained.

CONCLUSIONS

It may be concluded that this method, as used by
previous authors to determine discontinuity impedances
may be extended successfully to determine the eigen-
values of centrally loaded circular cylindrical cavities.
The necessary accuracy can be achieved rapidly on high-
speed digital computers without a need to generate
special functions to increase the rate of convergence.
Furthermore it has been shown that this method of cal-
culation allows a check of the number of terms to be
used in the series expansions, the order of the deter-
minant, as well as the number of significant figures that
must be carried in the calculations for a desired degree
of accuracy.

TABLE OF SYMBOLS

@m, bn, Cn cOnstants
A,., B, constants
Epng error term in /i,
H, L, b, a dimension of the cavity
r=b/a
K, aconstant defined by a ratio of inte-
grals
kn, kmy, Bm, I'n  constants of separation
ko=w/poeo

Eo®, ko®
kOn

particular values of k¢
the set of eigenvalues of the system
under consideration
ks proportionality constant
m, #, ¢ 1integers
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#o, #1 particular values of »
pom  zeros of Jo(p)
R Rp. sets of constants

Von  zeros of Zy(v) =Zo(v/k)
V: total cavity volume
Xgy Zny Bmay Bamg functions
Z,(x) linear combination of Bessel [unction
of the first and second kind
A(ky) indicial determinant
At volume of perturbing body
w radian frequency
wo resonant radian frequency of un-
disturbed system
01, 62 error in A(kg)
>>  “very much greater than.”
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